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I. INTRODUCTION

Distributed coordination of large teams of robots for solving
collective tasks (tasks that require more than one individual
to complete, with each individual performing a discreet part
of the task) is a challenging problem [2]. Numerous animals
exhibit distributed collective behavior (e.g., birds, fish, bees),
and their study has led to novel approaches for multirobot
coordination [3]. Human coordination, however, has received
little attention in the multirobot coordination literature [4].
In computer science, behavioral experiments have been con-
ducted to examine the ability of human subjects to solve
complex global tasks in social networks in a distributed fashion
using only local interactions [5].

Here, we describe an approach to collecting data of human
coordination in collective tasks, toward the goal of learning
novel methods for distributed multirobot coordination. The
goal of our data collection is to distill human coordination
capabilities into a form that can be more easily transferred
into robotic systems. Humans are complex cognitive beings,
and their actions are based on many factors, including rich
perception, motor, and communication capabilities. Robots,
however, have quite limited perception, motor, and commu-
nication capabilities, which makes transferring human-learned
skills to robots challenging.

Thus, to conduct our investigations, we created a networked
experimental platform that functions as an online multiplayer
game. Using this platform, we explore the ability of human
study participants to solve complex coordinated tasks as an
agent with robot-like capabilities, including limited percep-
tion (based on lidar), no explicit communication capabilities
(since peer-to-peer communication is challenging for large
teams of robots), and limited motor capabilities. The tasks
the participants solve are shape formation tasks (e.g. form a
collective circle or square), which, while simple, have shown
promise for inspiring novel methods of signaling without
explicit communication for robots, as well as for localization.
Here, we present and examine preliminary results of studies
we have conducted using this platform, and discuss potential
applications of knowledge gained from these experiments.

II. METHODOLOGY

We have conducted two one-and-a-half-hour long exper-
imental sessions; here we discuss the second investigation,
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Fig. 1. Screenshot of participant application’s GUI.
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Fig. 2. Initial (top) and final (bottom) configurations for four tasks.

which had 25 participants, recruited from an undergraduate
robotics course with third and fourth year university students.
Participants were in a single computer lab classroom, with
each participant running our networked experimental platform,
described in Section III), on their computer. The platform
consists of a graphical user interface (GUI), using which
participants controlled their agent in and observed the collec-
tive arena (Fig. 1); an administrative interface for the experi-
menter, in which the experimenter determined the parameters
of each task and terminated tasks when they were complete;
and a server, which logged the actions of each participant.
The server runs the backend processes, including recording
each participant’s data (position, color, Localized! and Done!
signals, current timestamp) every 100ms. Participants were
instructed to interact only through the experimental platform,
and wore earplugs throughout the session to discourage any
other interaction.

III. PARTICIPANT GUI

Each participant controlled their agent’s color and motion,
and interacted with other agents within the arena on several
tasks. Since we hypothesized that available perception affects
the task outcome, tasks during the session had differing
parameters, and thus variation in the GUI was necessary. The



Fig. 3. The yellow agent leaves the formation to guide the purple agent. The
faded tail indicates temporal progress.

Fig. 4. Color of all agents for the full duration of task 3. After color consensus
is reached, agent 15 remains a different color to maintain localization, an
example of a high-level behavior which was observed in several tasks from
several players. The inset shows agent 15 with neighbors at 130 s (marked).
Other agents using color for localization can also be seen (e.g. 3, 14, 23, 25).

key consideration in GUI design was that the human-controlled
agents’ sensory and communication capabilities resembles
those available to a low-cost robot platform, e.g., differential
drive, a laser rangefinder or sonar, and an array of LEDs.

The GUI (Fig. 1) may contain a Neighborhood View (NV)
and/or an Overhead View (OV), depending on the task. The
Neighborhood View provides local perception for each agent,
modeled after a limited-range laser rangefinder, thus it has
occlusions and shows no color. The Overhead View represents
images of the arena from an overhead camera, broadcasted to
all robots.

Each participant can change his or her agent’s color with
the A, S, D keys and move the agent with the up, down, left,
and right keys. Participants are instructed to press the Done!
button when they feel they do not need to take further action,
and the Localized! button to indicate they have localized their
agent in the Overhead View (these selections can be reverted
by the participants). These indications cannot be observed by
other participants; their sole purpose is for post-hoc analysis.

IV. RESULTS

Table I lists the seven tasks and the capabilities given
to the participants for each. Tasks 1, 2, 5, and 6 had both
Overhead and Neighborhood Views. Tasks 3 and 4 had only
the Overhead View, and task 7 had only the Neighborhood
View. In tasks 1, 2, 3, 5, and 6, participants had to achieve
color consensus.

Participants successfully completed all formation tasks
(Fig. 2). In task 7, with only the Neighborhood View available,
the task duration was significantly higher than when the

TABLE I
FORMATION TASK PARAMETERS AND COMPLETION TIMES

Order 1 2 3 4 5 6 7

Tasks Rectangle Circle Square Circle Rectangle Circle Rectangle

Views OV-NV OV-NV OV OV OV-NV OV-NV NV

# Colors 3 3 3 1 3 3 N/A

Time (s) 167 144 149 77 62 53 513

Overhead View was available, indicating the strong effect of
global feedback (Table I). In contrast, tasks with only the
Overhead View available did not have a significant effect on
completion time.

To complete the task, most players first localized in the
Overhead View. Several methods were used for localization,
including changing color, moving in a specific direction, and
moving in a defined pattern. These localization techniques are
a method of active perception that can be easily translated into
robotic systems.

Players did not have explicit communication capabilities,
thus they developed novel signaling techniques. Signals in-
cluded repeatedly colliding into other agents (Fig. 3) and
rapidly changing color; these techniques can inspire new
implicit communication techniques for multirobot systems.

Preliminary study results suggest the existence of a finite
set of high-level behaviors from which each participant’s
strategies can be formed (Fig. 4). Most behaviors were similar
among many players; however, certain roles and behaviors
were more frequently adopted by some individuals. This natu-
ral heterogeneity in human teams, along with the stochasticity
of human decision-making, plays an important role in the
ability of human groups to solve complex collective tasks.

V. CONCLUSION AND FUTURE WORK

In this abstract, we presented preliminary results of our
study on crowdsourced human coordination, which resulted
in novel signaling and localization techniques, which we
plan to apply to multi-robot systems. Our ongoing work is
focused on data interpretation and implementation of the high-
level behaviors reported by the participants, with the goal of
producing stochastic algorithms that can be implemented on
real robots. Our future work will involve deploying this system
on a crowdsourcing site, such as Amazon Mechanical Turk,
Citizen Science, or CrowdFlower.
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[3] E. Şahin, “Swarm robotics: From sources of inspiration to domains of
application,” in Swarm Robotics, ser. Lecture Notes in Computer Science,
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